Word Gems
exploring self-realization, sacred personhood, and full humanity
Quantum Mechanics
Werner Heisenberg
Physics And Philosophy: He draws distinction between the 'physical' and 'psychical' act of observation concerning the question 'What happens really in an atomic event?'
|
return to "Quantum Mechanics" main-page
Werner Heisenberg (1901-1976)
From chapter 3 of Dr. Heisenberg's 1958 book, Physics And Philosophy
Editor's prefatory comment:
One could wish for the opportunity to request from Heisenberg clarity for certain statements. He speaks of a difference between “physical” and “psychical” observation in terms of “the transition from the 'possible' to the 'actual'.”
You’ll want to read the entire text below, but it seems to me that he wants to limit the notion of “mind over matter”, that “thoughts create things.” While these concepts have their place, in another context, in another place, Heisenberg, if I read him correctly, emphasizes here the changes to the possibilities “in potentia” (discussed in another article): one is chosen, the rest disappear.
These hidden possibilities “do not depend on any observer,” he says, and are altered when, finally, a particle is actualized.
Heisenberg points out:
The probability function—unlike the common procedure in Newtonian mechanics —does not describe a certain event but, at least during the process of observation, a whole ensemble of possible events. The observation itself changes the probability function discontinuously; it selects of all possible events the actual one that has taken place. Since through the observation our knowledge of the system has changed discontinuously, its mathematical representation also has undergone the discontinuous change and we speak of a 'quantum jump'.
I take this to mean that, yes, an observation, in a sense, forces the hand of Nature to produce an “actuality,” but the exact character of what is produced is not controlled by the observing element, human or mechanical; instead, the “actualized” entity issues as a function of the hidden “potentia,” that which is most probable to occur.
|
A real difficulty in the understanding of this interpretation arises, however, when one asks the famous question: But what happens 'really' in an atomic event? It has been said before that the mechanism and the results of an observation can always be stated in terms of the classical concepts. But what one deduces from an observation is a probability function, a mathematical expression that combines statements about possibilities or tendencies with statements about our knowledge of facts.
So we cannot completely objectify the result of an observation, we cannot describe what 'happens' between this observation and the next. This looks as if we had introduced an element of subjectivism into the theory, as if we meant to say: what happens depends on our way of observing it or on the fact that we observe it.
Before discussing this problem of subjectivism it is necessary to explain quite clearly why one would get into hopeless difficulties if one tried to describe what happens between two consecutive observations. For this purpose it is convenient to discuss the following ideal experiment:
We assume that a small source of monochromatic light radiates toward a black screen with two small holes in it. The diameter of the holes may be not much bigger than the wave length of the light, but their distance will be very much bigger.
At some distance behind the screen a photographic plate registers the incident light. If one describes this experiment in terms of the wave picture, one says that the primary wave penetrates through the two holes; there will be secondary spherical waves starting from the holes that interfere with one another, and the interference will produce a pattern of varying intensity in the photographic plate. The blackening of the photographic plate is a quantum process, a chemical reaction produced by single light quanta.
Therefore, it must also be possible to describe the experiment in terms of light quanta. If it would be permissible to say what happens to the single light quantum between its emission from, the light source and its absorption in the photographic plate, one could argue as follows:
The single light quantum can come through the first hole or through the second one. If it goes through the first hole and is scattered there, its probability for being absorbed at a certain point of the photographic plate cannot depend upon whether the second hole is closed or open. The probability distribution on the plate will be the same as if only the first hole was open.
If the experiment is repeated many times and one takes together all cases in which the light quantum has gone through the first hole, the blackening of the plate due to these cases will correspond to this probability distribution.
If one considers only those light quanta that go through the second hole, the blackening should correspond to a probability distribution derived from the assumption that only the second hole is open. The total blackening, therefore, should just be the sum of the blackenings in the two cases; in other words, there should be no interference pattern.
But we know this is not correct and the experiment will show the interference pattern. Therefore the statement that any light quantum must have gone either through the first or through the second hole is problematic and leads to contradictions.
This example shows clearly that the concept of the probability function does not allow a description of what happens between two observations. Any attempt to find such a description would lead to contradictions; this must mean that the term 'happens' is restricted to the observation.
Now, this is a very strange result, since it seems to indicate that the observation plays a decisive role in the event and that the reality varies, depending upon whether we observe it or not.
To make this point clearer we have to analyze the process of observation more closely. To begin with, it is important to remember that in natural science we are not interested in the universe as a whole, including ourselves, but we direct our attention to some part of the universe and make that the object of our studies. In atomic physics this part is usually a very small object, an atomic particle or a group of such particles, sometimes much larger—the size does not matter; but it is important that a large part of the universe, including ourselves, does not belong to the object.
Now, the theoretical interpretation of an experiment starts with the two steps that have been discussed. In the first step we have to describe the arrangement of the experiment, eventually combined with a first observation, in terms of classical physics and translate this description into a probability function. This probability function follows the laws of quantum theory, and its change in the course of time, which is continuous, can be calculated from the initial conditions; this is the second step.
The probability function combines objective and subjective elements. It contains statements about possibilities or better tendencies ('potentia' in Aristotelian philosphy), and these statements are completely objective, they do not depend on any observer; and it contains statements about our knowledge of the system, which of course are subjective in so far as they may be different for different observers.
In ideal cases the subjective element in the probability function may be practically negligible as compared with the objective one. The physicists' then speak of a 'pure case'.
When we now come to the next observation, the result of which should be predicted from the theory, it is very important to realize that our object has to be in contact with the other part of the world, namely, the experimental arrangement, the measuring rod, etc., before or at least at the moment of observation.
This means that the equation of motion for the probability function does now contain the influence of the interaction with the measuring device. This influence introduces a new element of uncertainty, since the measuring device is necessarily described in the terms of classical physics; such a description contains all the uncertainties concerning the microscopic structure of the device which we know from thermodynamics, and since the device is connected with the rest of the world, it contains in fact the uncertainties of the microscopic structure of the whole world. These uncertainties may be called objective in so far as they are simply a consequence of the description in the terms of classical physics and do not depend on any observer. They may be called subjective in so far as they refer to our incomplete knowledge of the world.
After this interaction has taken place, the probability function contains the objective element of tendency and the subjective element of incomplete knowledge, even if it has been a 'pure case' before.
It is for this reason that the result of the observation cannot generally be predicted with certainty; what can be predicted is the probability of a certain result of the observation, and this statement about the probability can be checked by repeating the experiment many times.
The probability function—unlike the common procedure in Newtonian mechanics—does not describe a certain event but, at least during the process of observation, a whole ensemble of possible events. The observation itself changes the probability function discontinuously; it selects of all possible events the actual one that has taken place. Since through the observation our knowledge of the system has changed discontinuously, its mathematical representation also has undergone the discontinuous change and we speak of a 'quantum jump'.
When the old adage 'Natura non facit saltus’ [Nature does nothing in leaps] is used as a basis for criticism of quantum theory, we can reply that certainly our knowledge can change suddenly and that this fact justifies the use of the term 'quantum jump'.
Therefore, the transition from the 'possible' to the 'actual' takes place during the act of observation. If we want to describe what happens in an atomic event, we have to realize that the word 'happens' can apply only to the observation, not to the state of affairs between two observations.
It applies to the physical, not the psychical act of observation, and we may say that the transition from the 'possible' to the 'actual' takes place as soon as the interaction of the object with the measuring device, and thereby with the rest of the world, has come into play; it [the transition from the 'possible' to the 'actual'] is not connected with the act of registration of the result by the mind of the observer.
The discontinuous change in the probability function, however, takes place with the act of registration [Editor's note: I believe this refers to the moment when the 'possible' becomes the 'actual'], because it is the discontinuous change of our knowledge in the instant of registration that has its image in the discontinuous change of the probability function.
To what extent, then, have we finally come to an objective description of the world, especially of the atomic world? In classical physics, science started from the belief—or should one say from the illusion?—that we could describe the world or at least parts of the world without any reference to ourselves.
This is actually possible to a large extent. We know that the city London exists whether we see it or not. It may be said that classical physics is just that idealization in which we can speak about parts of the world without any reference to ourselves. Its success has led to the general ideal of an objective description of the world. Objectivity has become the first criterion for the value of any scientific result.
Does the Copenhagen interpretation of quantum theory still comply with this ideal? One may perhaps say that quantum theory corresponds to this ideal as far as possible. Certainly quantum theory does not contain genuine subjective features, it does not introduce the mind of the physicist as a part of the atomic event. But it starts from the division of the world into the 'object' and the rest of the world, and from the fact that at least for the rest of the world we use the classical concepts in our description.
This division is arbitrary and historically a direct consequence of our scientific method; the use of the classical concepts is finally a consequence of the general human way of thinking. But this is already a reference to ourselves and in so far our description is not completely objective.
It has been stated in the beginning that the Copenhagen interpretation of quantum theory starts with a paradox. It starts from the fact that we describe our experiments in the terms of classical physics and at the same time from the knowledge that these concepts do not fit nature accurately. The tension between these two starting points is the root of the statistical character of quantum theory.
Therefore, it has sometimes been suggested that one should depart from the classical concepts altogether and that a radical change in the concepts used for describing the experiments might possibly lead back to a non-statistical, completely objective description of nature.
This suggestion, however, rests upon a misunderstanding. The concepts of classical physics are just a refinement of the concepts of daily life and are an essential part of the language which forms the basis of all natural science. Our actual situation in science is such that we do use the classical concepts for the description of the experiments, and it was the problem of quantum theory to find theoretical interpretation of the experiments on this basis. There is no use in discussing what could be done if we were other beings than we are.
At this point we have to realize, as von Weizsacker has put it, that 'Nature is earlier than man, but man is earlier than natural science.’ The first part of the sentence justifies classical physics, with its ideal of complete objectivity. The second part tells us why we cannot escape the paradox of quantum theory, namely, the necessity of using the classical concepts.
We have to add some comments on the actual procedure in the quantum-theoretical interpretation of atomic events. It has been said that we always start with a division of the world into an object, which we are going to study, and the rest of the world, and that this division is to some extent arbitrary. It should indeed not make any difference in the final result if we, e.g., add some part of the measuring device or the whole device to the object and apply the laws of quantum theory to this more complicated object.
It can be shown that such an alteration of the theoretical treatment would not alter the predictions concerning a given experiment. This follows mathematically from the fact that the laws of quantum theory are for the phenomena in which Planck's constant can be considered as a very small quantity, approximately identical with the classical laws. But it would be a mistake to believe that this application of the quantum theoretical laws to the measuring device could help to avoid the fundamental paradox of quantum theory.
The measuring device deserves this name only if it is in close contact with the rest of the world, if there is an interaction between the device and the observer. Therefore, the uncertainty with respect to the microscopic behaviour of the world will enter into the quantum-theoretical system here just as well as in the first interpretation.
If the measuring device would be isolated from the rest of the world, it would be neither a measuring device nor could it be described in the terms of classical physics at all. With regard to this situation Bohr has emphasized that it is more realistic to state that the division into the object and the rest of the world is not arbitrary. Our actual situation in research work in atomic physics is usually this: we wish to understand certain phenomenon, we wish to recognize how this phenomenon follows from the general laws of nature.
Therefore that part of matter or radiation which takes part in the phenomenon is the natural 'object' in the theoretical treatment and should be separated in this respect from the tools used to study the phenomenon. This again emphasizes a subjective element in the description of atomic events, since the measuring device has been constructed by the observer, and we have to remember that what we observe is not nature in itself but nature exposed to our method of questioning.
Our scientific work in physics consists in asking questions about nature in the language that we possess and trying to get an answer from experiment by the means that are at our disposal. In this way quantum theory reminds us, as Bohr has put it, of the old wisdom that when searching for harmony in life one must never forget that in the drama of existence we are ourselves both players and spectators. It is understandable that in our scientific relation to nature our own activity becomes very important when we have to deal with parts of nature into which we can penetrate only by using the most elaborate tools.
Editor’s note: Concerning this “deciding in favor of Plato,” it seems that this has been taken too far. See Dr. Sheldrake’s comments regarding the “constants” of science as less than eternally rigid; also, see Dr. Goldman’s lectures on the tendency of modern science to set-in-stone as “law” that which cannot be proved, mere extension of dogma of early scientific philosophers from 1100 AD.
|
Editor's last word:
Another way of categorizing the above is that Heisenberg is no fan of philosophies such as "The Secret" and similar. Those teachings misrepresent the essence of QM.
See extensive discussion in this article.
|
|